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1. INTRODUCTION

Let the sequence P./Hi ;> 0) satisfy

(1.1)

and define (the divided difference)

[xAm, ...,xAm] = i xAllw~m(A-;),
/~m

O<m<n=O, 1,2, ...,

where wnm(x) = (x - Am)' .. (x - An), 0 < m < n = 0, 1,2, .... Denote

Pnm(x) = (_1)n-1 Am'" An-I [xAm, ., .,xAn ], 0 < m < n,Pnn(x) = x An

and

o< m < n, IXnn = 1.

It is well known thatpnm(x);> 0 for 0 < m < n = 0, 1,2, ... and 0 < x < 1.

With a functionf(t), bounded in [0,1], we associate the operators

00

LmU, x) = L Pnm(X)f(IXnm),
n=m

m;>O.

These operators, which generalize the Bernstein power-series of Meyer-Konig
and Zeller [7], were first introduced by Jakimosvki and the author in [4], where
some approximation properties were stated without proof. (For proofs see
[5]). More recently, these operators were redefined and their approximation
properties, were studied independently and from a different point of view by
Feller [2].

It is our purpose here to discuss the approximation properties of the
derivatives of Lm(j,x).

2. AUXILIARY LEMMAS

We make use of the following lemmas.
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LEMMA A. Let f(t) be bounded in [0,1]. Then (i) At each point of continuity
t = x, 0 < x.,;; 1, off(t)

lim Lm(f, x) = f(x).
m->oo

(2.1)

(ii) If f(t) is continuous in [a,b], 0 < a < b.,;; 1, then (2.1) holds uniformly in
a.,;; x.,;; b. (iii) /ff(t) is continuous in [O,b], 0 < b.,;; 1, then (2.1) holds uniformly
in 0 < x.,;; b. (iv) For 0 < x.,;; 1, we have Lm(1, x) == 1, m;;;. O.

Lemma A is Theorem 4.1 of [4] and is proved in [5].

LEMMA B. For 0 < x.,;; 1 and 0 .,;; m.,;; n = 0,1,2, ... , we have

d
d Pnm(x) = X-I [AnPnm(X) - An-lPn-I m(x)] (2.2)X .

and

d
d Pnm(x) = X-I Amfpnm(X) - Pn m+ I (x»). (2.3)x .

(Pnk(X) = Ofor n < k).
Lemma B was used by the author several times in the past (see for example

[4), (4.5».

LEMMA C. Letf(t) be bounded in [0,1]. Thenfor 0 < x.,;; 1 and every m;;;. 0,
we have

(2.4)

Proof. Let M = sup If(t)l. By (2.3), we have for every 0 < x.,;; 1,
0<;;/<;;1

I~Pnm(X)f(C(nm)l.,;;MAmX-I[Pnm(x) +Pn,m+I(X»).

By Lemma A, the series 2~~m Pnm(x) converges to the continuous function 1 for
O<x.,;; 1. Since Pnm(x);;;,O for 0.,;;m.,;;n=0,1,2,oo. and O<x.,;; 1, the
convergence is monotonic and thus uniform in 0 < 0 .,;; x .,;; 1 for any fixed
o> O. Therefore Lm( f, x) is differentiable and (2.4) holds.

3. MAIN RESULTS

THEOREM 1. Let f(t) be a continuously differentiable function in 0.,;; t.,;; 1.
Then for every fixed 0 > 0,

d
lim -d Lm(f, x) = j'(x) uniformly in 8 .,;; x.,;; 1. (3.1)
m....oo X
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Proof Assume first that AI = 1. By (2.4) and (2.2). we have

d '"
dxLm(f,x) = X-I n~ ['\nPnm(x) - '\-IPn-l ,m(X)]f(iXnm)· (3.2)

Now,

N

2: [AnPnm(X) - An-lPn-I. m(X)]f(iXnm)
n=m

N

= 2: Pnm(X) An[f(iXnm) - f(iXn+l, m)] + AN PNm(x)f(iXN+I,m),
n=m

and since, for every m» 1 and °< x < 1 we have AN PNm(X) -'>- °as N -'>- 00

(see [3] Satz 1), andf(t) is bounded, we obtain

'" '"2: PnPnm(x) - An-IPn-l,m(x)]f(iXnm) = 2: Pnm(x) An [f(iXnm) - f(iXN+I,m)].
n=m n=rn

Thus, by (3.2),

~Lm(f,X) = X-I n~ Pnm(X) An[f(iXnm) - f(iXn+l,m)]

'"
= X-I 2: Pnm(X) An(iXnm - iXn+1 ,m)f'«()nm) (3.3)

n=rn

'"
= X-I .L Pnm(X) iXnm f'(8nm),

n=m

where iXn+l, m < ()nm < iXnm, n » m » 0.
Since f'(t) is continuous in [0, 1], for E> °there exists o(E) > °such that

I/'(t l) - f'(t2 ) I< E provided It I - t2 1 < o. Take mo sufficiently large so that
A;;;~ < 0; then for n» m» mo we have

Consequently for m » mo,

I~Lm(f, x) - X-I Lm(tf'(t), X)~ < X-I n~ Pnm(x) iXnmlf'«()nm) - f'(iXnm)I (3.4)

'"-I" ()_ -1< EX L, Pnm X - EX .
n=m

It follows by Lemma A (ii) that for every fixed 0 > 0,

lim Lm(tf'(t), x) = xf'(x), uniformly in 0 < X < 1;
m->oo
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hence by (3.4)

lim dd Lm(f, x) = f'(x) , uniformly in S ",;;; x",;;; 1.
m->Ol X

This concludes our prooffor the case Al = 1. IfAI"" 1, apply Theorem 1(which
is already proved for Al = 1) to the sequence {AjA1I}(i;;:. 0) and the function
g(t) = f(t 1/AI).

Remark. For another kind ofBernstein type approximation operators known
as the generalized Bernstein polynomials (see [6]), a theorem similar to
Theorem 1 was given by Bada1jan [1].

THEOREM 2. Let f(t) be bounded in [0,1]. If f(t) is nondecreasing (non
increasing) in [0,1], then (for each fixed m;;:. 0) so is Lm(f,x).

Proof Since the first equality in (3.3) is proved for every function bounded in
[0,1], our result follows immediately by (3.3).
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